The structural, mechanical, and biological variation of silica bioglasses obtained by different sintering temperatures
Journal of Sol-Gel Science and Technology, ISSN: 1573-4846, Vol: 112, Issue: 1, Page: 289-310
2024
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures5
- Readers5
Article Description
The challenges of forming a crystalline phase within 45S5 Bioglass (45% SiO-24.5% CaO-24.5% NaO-6% PO mol%) and its subsequent influence on the bioactivity of the bioglass were studied in this research. Bioglasses were sintered at 1400, 750, and 550 °C, using both melting and sol-gel methods. The different responses of bioglasses to different sintering temperatures were revealed. Particularly, increased crystallinity was observed in sol-gel-derived bioglass sintered at 750 °C, indicating a denser and more ordered structure. This crystalline architecture facilitated enhanced bioactivity, as demonstrated by increased hydroxyapatite deposition when immersed in simulated body fluid (SBF). Furthermore, superior mechanical properties and biocompatibility were achieved with this temperature regime, making it a prime candidate for bone regeneration applications. The bioglass sintered at 750 °C exhibited an accelerated degradation rate associated with its porosity, potentially contributing to faster material resorption in vivo. Its antibacterial efficacy against E. coli and S. aureus was also noted, and in vitro studies with MTT assay confirmed that the optimized sol-gel bioglass meets biocompatibility standards. These findings highlight the potential of fine-tuning the sintering temperature to modulate the crystallinity of bioglasses, thereby enhancing their application scope in bone tissue engineering. Graphical Abstract: (Figure presented.)
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know