PlumX Metrics
Embed PlumX Metrics

Characterization of ignition and combustion characteristics of phenolic fiber-reinforced plastic with different thicknesses

Journal of Thermal Analysis and Calorimetry, ISSN: 1588-2926, Vol: 140, Issue: 2, Page: 645-655
2020
  • 13
    Citations
  • 0
    Usage
  • 12
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    13
    • Citation Indexes
      13
  • Captures
    12

Article Description

The present study focuses on ignition and combustion characteristics of phenolic fiber-reinforced plastic (FRP) with different thicknesses under different external heat fluxes using cone calorimeter, which receives little attention to date. A series of parameters including ignition time, thermal thickness, mass loss factor, mass loss rate (MLR), heat release rate (HRR), total heat release (THR), fire performance index (FPI) and fire growth index (FGI) are measured or calculated. Results indicate that the ignition time increases with the thickness, but decreases with the external heat flux. Phenolic FRP with thickness of 3 mm may be considered as thermally thin material. However, phenolic FRP with thickness of 5 and 8 mm is prone to be thermally thick material. The critical heat flux, minimum heat flux and ignition temperature are deduced and validated. The thermal thickness increases with the external heat flux. Linear correlations of the thermal thickness with the ratio of specimen density and external heat flux are demonstrated and presented. The mass loss factor decreases with the thickness. Three and two peak MLRs occur in the cases of low and high external heat fluxes, respectively. The average MLR increases with the external heat flux and thickness. The average and maximum HRR increases with the external heat flux. The FGI for the maximum HRR increases with the external heat flux. Linear correlations of the average MLR, the average and maximum HRR and the FGI for the maximum HRR with the external heat flux are demonstrated and presented.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know