Effect of CSH-PCE nanocomposites on early hydration of the ternary binder containing Portland cement, limestone, and calcined coal gangue
Journal of Thermal Analysis and Calorimetry, ISSN: 1588-2926, Vol: 149, Issue: 22, Page: 12685-12695
2024
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures1
- Readers1
Article Description
In this work, the impact of lab synthetic addition agent, CSH-PCE nanocomposites (CPNs), on the early hydration property of the ternary binder containing Portland cement, limestone, and calcined coal gangue was investigated. CPNs were added in partial substitution of Portland cement by mass at 0%, 0.5%, 1.0%, 1.5%, 2.0%, 2.5% and 3.0%. X-ray diffraction (XRD), isothermal calorimetry, mercury intrusion porosimetry, and scanning electron microscopy were used to characterize the hydration and hydrates of the CPNs-modified pastes systematically. The workability and compressive strength of this ternary system was also studied. The obtained results indicated that the use of CPNs continuously improved the workability of the ternary mortar. The compressive strength of the ternary mortar increased with CPNs additions until the threshold limits of 3.0% and 2.5% before and after 12 h, under which the strength values were even higher than the reference OPC mortar at each age. Isothermal calorimetry results indicated that CPNs promoted cement hydration and produced more hydrates, which were also verified by the qualitative XRD analysis. This promotion effect leads to significant reduction in porosity as well as densification in microstructure within the ternary paste, ultimately resulting in enhanced early-age compressive strength. These findings provide valuable insights for designing lower carbon footprint ternary blends incorporating calcined coal gangue and limestone while maintaining comparable early-age compressive strength to traditional cement.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know