PlumX Metrics
Embed PlumX Metrics

Measuring boundary convexity at multiple spatial scales using a linear "moving window" analysis: An application to coastal river otter habitat selection

Landscape Ecology, ISSN: 0921-2973, Vol: 25, Issue: 10, Page: 1575-1587
2010
  • 12
    Citations
  • 0
    Usage
  • 68
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    12
    • Citation Indexes
      11
    • Policy Citations
      1
      • Policy Citation
        1
  • Captures
    68

Article Description

Landscape metrics have been used to quantify ecological patterns and to evaluate relationships between animal presence/abundance and habitat at multiple spatial scales. However, many ecological flows occur in linear systems such as streams, or across patch/landscape boundaries (ecotones). Some organisms and flows may depend on the boundary shape, but metrics for defining linear boundary characteristics are scarce. While sinuosity and fractal dimension address some elements of shape, they fail to specify the dominate shape direction (convexity/concavity). We propose a method for measuring boundary convexity and assess its utility, along with sinuosity and fractal dimension, for predicting site selection by coastal river otters. First, we evaluate the characteristics of boundary convexity using a hypothetical boundary. Second, to compare convexity with other linear metrics boundary convexity, sinuosity and fractal dimension were calculated for the coastline of a set of islands in Prince William Sound, AK. Finally, we use logistic regression in an information-theoretic framework to assess site selection of river otters as a function of these linear metrics. Boundary convexity, fractal dimension and sinuosity are relatively uncorrelated at all scales. Otter latrine sites occurred at significantly more convex locations on the coastline than random sites. Using logistic regression and convexity values at the 100 m window-size, 69.5% of the latrine sites were correctly classified. Coastal terrestrial convexity appears to be a promising landscape-scale metric for predicting otter latrine sites. We suggest that boundary convexity may be an important landscape metric for describing species use or ecological flows at ecotones. © 2010 Springer Science+Business Media B.V.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know