Pattern of tree species co-occurrence in an ecotone responds to spatially variable drivers
Landscape Ecology, ISSN: 1572-9761, Vol: 37, Issue: 9, Page: 2327-2342
2022
- 3Citations
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Context: Ecological structure in ecotones, defined by how species from adjacent systems co-occur, affects ecosystem functions and climate change responses. Ecotone structure can vary spatially, yet variability in broader-scale ecotones is poorly understood. In Wisconsin (USA) the Tension Zone is an ecoregional ecotone, separating northern and southern ecosystems. Objectives: Characterize ecotone structure in the Tension Zone, examine how structure varied spatially, and identify how environmental drivers affected structure. Methods: Using historical (1800s) tree occurrence data, we examined co-occurrence of northern and southern species at multiple scales (1.0 km to 7.5 km) at different locations in the Tension Zone, identifying the finest scale at which co-occurrence was detected. We assessed relationships between co-occurrence and environmental variables. Results: Co-occurrence emerged at different scales, related to interacting climate and soil variables and location within the ecotone. Northern and southern trees co-occurred at broader scales near ecotone center and at locations with higher climatic water availability and sandier soils; they co-occurred at finer scales in locations with higher climatic water availability and richer soils. Sites with xeric tree species were associated with broader-scale co-occurrence. Conclusions: We detected spatially variable structure within the Tension Zone, resulting from multi-scale processes among underlying environmental drivers. Finer-scale co-occurrence may have resulted from competition in high-resource environments, while broader scale co-occurrence may have been driven by fire and associated feedbacks. Characterizing structure in an ecoregional ecotone adds to a growing body of evidence that finer-scale factors play a role in defining the characteristics, functions, and responses of broader-scale ecotones.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know