Conditional screening for ultrahigh-dimensional survival data in case-cohort studies
Lifetime Data Analysis, ISSN: 1572-9249, Vol: 27, Issue: 4, Page: 632-661
2021
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures6
- Readers6
Article Description
The case-cohort design has been widely used to reduce the cost of covariate measurements in large cohort studies. In many such studies, the number of covariates is very large, and the goal of the research is to identify active covariates which have great influence on response. Since the introduction of sure independence screening, screening procedures have achieved great success in terms of effectively reducing the dimensionality and identifying active covariates. However, commonly used screening methods are based on marginal correlation or its variants, they may fail to identify hidden active variables which are jointly important but are weakly correlated with the response. Moreover, these screening methods are mainly proposed for data under the simple random sampling and can not be directly applied to case-cohort data. In this paper, we consider the ultrahigh-dimensional survival data under the case-cohort design, and propose a conditional screening method by incorporating some important prior known information of active variables. This method can effectively detect hidden active variables. Furthermore, it possesses the sure screening property under some mild regularity conditions and does not require any complicated numerical optimization. We evaluate the finite sample performance of the proposed method via extensive simulation studies and further illustrate the new approach through a real data set from patients with breast cancer.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85113140867&origin=inward; http://dx.doi.org/10.1007/s10985-021-09531-7; http://www.ncbi.nlm.nih.gov/pubmed/34417679; https://link.springer.com/10.1007/s10985-021-09531-7; https://dx.doi.org/10.1007/s10985-021-09531-7; https://link.springer.com/article/10.1007/s10985-021-09531-7
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know