Imputation of missing links and attributes in longitudinal social surveys
Machine Learning, ISSN: 1573-0565, Vol: 95, Issue: 3, Page: 329-356
2014
- 11Citations
- 34Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
The predictive analysis of longitudinal social surveys is highly sensitive to the effects of missing data in temporal observations. Such high sensitivity to missing values raises the need for accurate data imputation, because without it a large fraction of collected data could not be used properly. Previous studies focused on the treatment of missing data in longitudinal social networks due to non-respondents and dealt with the problem largely by imputing missing links in isolation or analyzing the imputation effects on network statistics. We propose to account for changing network topology and interdependence between actors' links and attributes to construct a unified approach for imputation of links and attributes in longitudinal social surveys. The new method, based on an exponential random graph model, is evaluated experimentally for five scenarios of missing data models utilizing synthetic and real life datasets with 20 %-60 % of nodes missing. The obtained results outperformed all alternatives, four of which were link imputation methods and two node attribute imputation methods. We further discuss the applicability and scalability of our approach to real life problems and compare our model with the latest advancements in the field. Our findings suggest that the proposed method can be used as a viable imputation tool in longitudinal studies. © 2013 The Author(s).
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know