Moments of the Count of a Regular Expression in a Heterogeneous Random Sequence
Methodology and Computing in Applied Probability, ISSN: 1573-7713, Vol: 21, Issue: 3, Page: 875-887
2019
- 1Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
We focus here on the distribution of the random count N of a regular expression in a multi-state random sequence generated by a heterogenous Markov source. We first briefly recall how classical Markov chain embedding techniques allow reducing the problem to the count of specific transitions in a (heterogenous) order 1 Markov chain over a deterministic finite automaton state space. From this result we derive the expression of both the mgf/pgf of N as well as the factorial and non-factorial moments of N. We then introduce the notion of evidence-based constraints in this context. Following the classical forward/backward algorithm in hidden Markov models, we provide explicit recursions allowing to compute the mgf/pgf of N under the evidence constraint. All the results presented are illustrated with a toy example.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know