MiR-1224 downregulation inhibits OGD/R-induced hippocampal neuron apoptosis through targeting Ku protein
Metabolic Brain Disease, ISSN: 1573-7365, Vol: 37, Issue: 2, Page: 531-543
2022
- 9Citations
- 2Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations9
- Citation Indexes9
- Captures2
- Readers2
Article Description
Ischemic cerebrovascular disease is the main cause of disability due to stroke. This study aimed to investigate the function of miR-1224 in OGD/R-induced hippocampal neuron apoptosis, as well as the regulatory mechanism of miR-1224 in ischemic cerebrovascular disease. The oxygen-glucose deprivation/reperfusion (OGD/R) model of primary mouse hippocampal neurons was established. RT-qPCR detected miR-1224, Ku70 and Ku86 levels. Western blotting was applied to measure the expression of Ku70/86 and apoptosis related proteins. Flow cytometry was used to assess apoptosis. JC-1 fluorescence was performed to test the mitochondrial membrane potential (MMP) in neurons. The double luciferase reporter assay was performed to investigate the relationship between miR-1224 and Ku70/86. OGD/R induced the apoptosis and mitochondrial injury in neuronal cells, while miR-1224 downregulation or Ku70/86 upregulation reversed this phenomenon. Meanwhile, miR-1224 negatively regulated the expression of Ku70/86 in neuronal cells through directly targeting Ku70/86. Furthermore, knockdown of Ku70/86 significantly reversed the inhibitory effect of miR-1224 silencing on apoptosis and mitochondrial injury in OGD/R-treated neuronal cells. Our findings indicated that miR-1224 downregulation suppressed OGD/R-induced hippocampal neuron apoptosis by targeting Ku protein, suggesting that miR-1224 could serve as a new target for ischemic cerebrovascular disease treatment.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85119472606&origin=inward; http://dx.doi.org/10.1007/s11011-021-00873-7; http://www.ncbi.nlm.nih.gov/pubmed/34797485; https://link.springer.com/10.1007/s11011-021-00873-7; https://dx.doi.org/10.1007/s11011-021-00873-7; https://link.springer.com/article/10.1007/s11011-021-00873-7
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know