Non-linear dynamic analysis of symmetric and antisymmetric cross-ply laminated orthotropic thin shells
Meccanica, ISSN: 0025-6455, Vol: 49, Issue: 2, Page: 413-427
2014
- 29Citations
- 10Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this paper, the governing equations for non-linear free vibration of truncated, thin, laminated, orthotropic conical shells using the theory of large deformations with the Karman-Donnell-type of kinematic nonlinearity are derived. Applying superposition principle and Galerkin's method, these equations are reduced to a time dependent non-linear differential equation. The frequency-amplitude relationship for the laminated orthotropic thin truncated conical shell is obtained using the method of weighted residuals. In the particular case, we can obtain the similar relationships for the single-layer and laminated orthotropic cylindrical shells, also. The influence played by geometrical parameters of the conical shell and physical parameters of the laminate (i.e. material properties, staking sequences and number of layers) on the non-linear vibration behavior of the conical shell is examined. It is noticed that the non-linear vibration of shells is highly dependent on laminate characteristics and, from these observations, it is concluded that specific configurations of laminates should be designed for each kind of application. Present results are compared with available data for special cases. © 2013 Springer Science+Business Media Dordrecht.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84893904374&origin=inward; http://dx.doi.org/10.1007/s11012-013-9802-z; http://link.springer.com/10.1007/s11012-013-9802-z; http://link.springer.com/content/pdf/10.1007/s11012-013-9802-z; http://link.springer.com/content/pdf/10.1007/s11012-013-9802-z.pdf; http://link.springer.com/article/10.1007/s11012-013-9802-z/fulltext.html; https://dx.doi.org/10.1007/s11012-013-9802-z; https://link.springer.com/article/10.1007/s11012-013-9802-z
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know