DLSFEM–PML formulation for the steady-state response of a taut string on visco-elastic support under moving load
Meccanica, ISSN: 1572-9648, Vol: 55, Issue: 4, Page: 765-790
2020
- 7Citations
- 6Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The numerical solution of the steady-state response of a uniform taut string on visco-elastic support under a concentrated transverse moving load is addressed. By recasting the governing second-order differential equation as a first-order system in convected coordinate, a local Discontinuous Least-Squares Finite Element Method (DLSFEM) formulation is developed within a complex-valued function space, to overcome numerical instabilities linked to high-velocity loads and handle far-field conditions through an effective Perfectly Matched Layer (PML) implementation. As an original advancement of the present DLSFEM–PML formulation, a coercivity theorem is proven for any first-order ordinary differential system and uniform error estimates are established for the finite element approximation for bothL- andH-norms. Thus, the formulation newly joins a DLSFEM approach and a PML implementation, for solving the above-mentioned moving load problem. Numerical examples illustrate feasibility and accuracy of the method in reproducing the expected trends of solution and a priori error estimates.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know