Identification and mapping of quantitative trait loci for leaf rust resistance derived from a tetraploid wheat Triticum dicoccum accession
Molecular Breeding, ISSN: 1572-9788, Vol: 34, Issue: 4, Page: 1659-1675
2014
- 18Citations
- 33Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The Triticum turgidum ssp. dicoccum (2n = 4x = 28) accession MG5323 showed a useful level of resistance to leaf rust disease. A segregating population of 110 recombinant inbred lines (RILs), derived from a cross between cv Latino (T. turgidum spp. durum), susceptible to leaf rust, and MG5323 was evaluated for reactions of seedlings to two different Puccinia triticina isolates. Genotyping of the RILs was performed with different molecular markers (SSR, EST-SSR and SNP), leading to the construction of a linkage map containing 10,840 loci covering 14 chromosomes, with an average marker density of 0.22 cM/marker. Linkage analysis allowed the identification of three different regions significantly associated with leaf rust resistance, with MG5323 contributing the resistant alleles. A major resistance gene was detected on the short arm of chromosome 1B, explaining a total phenotypic variation ranging from 41.37 to 49.51 %. Two additional minor resistance genes located on chromosome 7B explained a phenotypic variation ranging between 17.77 and 25.81 %. No obvious positional relationships were observed when the map position of the genes was compared with those of other previously identified wheat leaf rust resistance genes, suggesting that new resistance sources to leaf rust were identified in the tetraploid background. A significant positive epistatic effect was detected between quantitative trait loci (QTLs) for each trait, indicating that different QTLs contribute different degrees of resistance. Analysis of the leaf rust responses of the RILs demonstrated that only lines bearing resistant alleles at both loci showed effective leaf rust resistance, indicating that the genes identified behave as complementary genes.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know