Poisson Quasi-Nijenhuis Manifolds and the Toda System
Mathematical Physics Analysis and Geometry, ISSN: 1572-9656, Vol: 23, Issue: 3
2020
- 3Citations
- 1Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The notion of Poisson quasi-Nijenhuis manifold generalizes that of Poisson-Nijenhuis manifold. The relevance of the latter in the theory of completely integrable systems is well established since the birth of the bi-Hamiltonian approach to integrability. In this note, we discuss the relevance of the notion of Poisson quasi-Nijenhuis manifold in the context of finite-dimensional integrable systems. Generically (as we show by a class of examples with 3 degrees of freedom) the Poisson quasi-Nijenhuis structure is largely too general to ensure Liouville integrability of a system. However, we present a general scheme connecting Poisson quasi-Nijenhuis and Poisson-Nijenhuis manifolds, and we give sufficient conditions such that the spectral invariants of the “quasi-Nijenhuis recursion operator” of a Poisson quasi-Nijenhuis manifold (obtained by deforming a Poisson-Nijenhuis structure) are in involution. Then we prove that the closed (or periodic) n-particle Toda lattice, along with its relation with the open (or non periodic) Toda system, can be framed in such a geometrical structure.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85087413578&origin=inward; http://dx.doi.org/10.1007/s11040-020-09352-4; https://link.springer.com/10.1007/s11040-020-09352-4; https://link.springer.com/content/pdf/10.1007/s11040-020-09352-4.pdf; https://link.springer.com/article/10.1007/s11040-020-09352-4/fulltext.html; https://dx.doi.org/10.1007/s11040-020-09352-4; https://link.springer.com/article/10.1007/s11040-020-09352-4
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know