PlumX Metrics
Embed PlumX Metrics

Segmentation fusion based on neighboring information for MR brain images

Multimedia Tools and Applications, ISSN: 1573-7721, Vol: 76, Issue: 22, Page: 23139-23161
2017
  • 19
    Citations
  • 0
    Usage
  • 8
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

In this paper, we study on how to boost image segmentation algorithms. First of all, a novel fusion scheme is proposed to combine different segmentations with mutual information to reduce misclassified pixels and obtain an accurate segmentation. As the class label of each pixel depends on the pixel’s gray level and neighbors’ labels, the fusion scheme takes both spatial and intensity information of pixels into account. Then, a detail thresholding segmentation case is designed using the proposed fusion scheme. In the case, the local Laplacian filter is used to get the smoothed version of original image. To accelerate segmentation, a discrete curve evolution based Otsu method is employed to segment the original image and its smoothed version to get two different segmentation maps. The fusion scheme is used to fuse the two maps to get the final segmentation result. Experiments on medical MR-T2 brain images are conducted to demonstrate the effectiveness of the proposed segmentation fusion method. The experimental results indicate that the proposed algorithm can improve segmentation accuracy and it is superior to other multilevel thresholding methods.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know