A unified cycle-consistent neural model for text and image retrieval
Multimedia Tools and Applications, ISSN: 1573-7721, Vol: 79, Issue: 35-36, Page: 25697-25721
2020
- 14Citations
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Text-image retrieval has been recently becoming a hot-spot research field, thanks to the development of deeply-learnable architectures which can retrieve visual items given textual queries and vice-versa. The key idea of many state-of-the-art approaches has been that of learning a joint multi-modal embedding space in which text and images could be projected and compared. Here we take a different approach and reformulate the problem of text-image retrieval as that of learning a translation between the textual and visual domain. Our proposal leverages an end-to-end trainable architecture that can translate text into image features and vice versa and regularizes this mapping with a cycle-consistency criterion. Experimental evaluations for text-to-image and image-to-text retrieval, conducted on small, medium and large-scale datasets show consistent improvements over the baselines, thus confirming the appropriateness of using a cycle-consistent constrain for the text-image matching task.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know