Automatic source scanner identification using 1D convolutional neural network
Multimedia Tools and Applications, ISSN: 1573-7721, Vol: 81, Issue: 16, Page: 22789-22806
2022
- 6Citations
- 14Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In this digital world, digitized documents can be considered original or a piece of evidence; checking the authenticity of any suspicious image has become an unavoidable concern to preserve the trust in its legitimacy. However, identifying the source of a digital image without any prior embedded information is a very challenging task. This paper proposes a novel one-dimensional convolutional neural network (1D-CNN) model to solve the source scanner identification (SSI) problem blindly. Unlike traditional methods based on handcrafted features, the proposed framework can dynamically learn and extract scanner device-specific features. This work, comprised of the 1D-CNN and a support vector machine (SVM) as a classifier, was trained on nine scanners of different brands and models. The experimental result shows that our model achieves 98.15% accuracy on full images and overall accuracy of 93.13% on segments from test images, outperforming other state-of-art approaches. Our model also proves to be able to distinguish between scanners of the same model. Furthermore, the SVM classifier improved the 1D-CNN accuracy by approximately 3% compared to its original configuration.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know