Hybrid SCCSA: An efficient multilevel thresholding for enhanced image segmentation
Multimedia Tools and Applications, ISSN: 1573-7721, Vol: 82, Issue: 21, Page: 32711-32753
2023
- 2Citations
- 7Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In a variety of image processing applications, multilevel thresholding image segmentation has gotten a lot of interest. When traditional approaches are utilised, however, the process of obtaining the ideal threshold values takes time. Despite the fact that Hybrid metaheuristic methods can be used to overcome these limits, such approaches may be ineffective when dealing with a local solution. The present study proposes a multi-level image thresholding based hybridization strategy based Sine-Cosine Crow Search Algorithm(SCCSA) to make more efficient image segmentation. The main limitation of the classical Crow Search Algorithm (CSA) is that search agents sometimes do not produce the best solutions. To update a solution to the best solution, each search agent can use Sine-Cosine Algorithm (SCA) movements to update its position accordingly. This ensures a good balance between two goals (exploration and exploitation) would improve the efficiency of the search algorithm. The optimal threshold values are searched by the chosen objective functions of the otsu’s and kapur’s entropy approaches. The hybrid algorithm is evaluated in 12 standard image sets and then compared with the performance of other state-of-the-art algorithms such as ICSA, SCA, CSA and ABC. Experimental results showed that, in different metrics of the output such as objective function values, PSNR, STD values, Mean, SSIM, FSIM and CPU time, the proposed algorithm is consistently higher than other algorithms. In addition, the wilcoxon test is performed using the proposed algorithm to detect the significant differences between the other algorithms. The findings indicated that the proposed SCCSA succeeds with other well-known algorithms and has dominance over robust, accurate and convergent values.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know