Seed-mediated synthesis of acanthosphere-like gold microstructures with tunable LSPR in the NIR region using gemini surfactants as directing agents for SERS applications
Journal of Nanoparticle Research, ISSN: 1572-896X, Vol: 19, Issue: 8
2017
- 5Citations
- 10Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Acanthosphere-like gold microstructures (AGMs) were synthesized using a facile, two-step, seed-mediated method and butanediyl-1,4-bis(dimethylhexadecylammonium bromide) (16-4-16) as a structure-directing agent. The morphologies and sizes of the products were controlled during the synthesis process by adjusting the concentrations of 16-4-16, the AgNO feed, HAuCl, ascorbic acid, the amount of Ag seeds and the types of gemini surfactants used through systematic inquiry; particle sizes ranging from 130 to 800 nm were well prepared. Correspondingly, the morphology of the products changed between regular and irregular AGMs, and the products presented a number of new morphologies, such as open-mouthed submicrostructures and ribbon nanowires. In particular, with the increase in the 16-4-16 concentration, the structural morphology of the thorns clearly changed from a tip to a lamellar structure. A UV-vis spectroscopic analysis indicated that the localized surface plasmon resonance (LSPR) peak of the AGMs could be adjusted by changing the above factors, which extended from 500 to 1350 nm in the near-infrared (NIR) region, enabling a tremendous potential for using the AGMs as platforms for various biomedical applications. Based on the intermediate products, we propose a two-stage growth mechanism for the AGMs in which their solid cores and tips are generated successively. Surface-enhanced Raman scattering (SERS) measurements indicate that the AGMs can serve as sensitive SERS substrates; a SERS detection limit of 5 × 10 M is presented for rhodamine B molecules. [Figure not available: see fulltext.].
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know