A Novel Hybrid Machine Learning Approach and Basin Modeling for Thermal Maturity Estimation of Source Rocks in Mandawa Basin, East Africa
Natural Resources Research, ISSN: 1573-8981, Vol: 33, Issue: 5, Page: 2089-2112
2024
- 2Citations
- 4Captures
- 1Mentions
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Findings on Machine Learning Reported by Investigators at China University of Geosciences (A Novel Hybrid Machine Learning Approach and Basin Modeling for Thermal Maturity Estimation of Source Rocks In Mandawa Basin, East Africa)
2024 JUL 19 (NewsRx) -- By a News Reporter-Staff News Editor at Network Daily News -- Investigators publish new report on Machine Learning. According to
Article Description
Basin modeling and thermal maturity estimation are crucial for understanding sedimentary basin evolution and hydrocarbon potential. Assessing thermal maturity in the oil and gas industry is vital during exploration. With artificial intelligence advancements, more accurate evaluation of hydrocarbon source rocks and efficient thermal maturity estimation are possible. This study employed 1D basin modeling using PetroMod and a novel hybrid group method of data handling (GMDH) neural network optimized by a differential evolution (DE) algorithm to estimate thermal maturity (Tmax) and assess kerogen type in Triassic–Jurassic source rocks of the Mandawa Basin, Tanzania. The GMDH–DE addresses the limitations of conventional methods by offering a data-driven approach that reduces computational time, overcomes overfitting, and improves accuracy. The 1D thermal maturity basin modeling suggests that the Mbuo source rocks reached the gas–oil window in late Triassic times and began expulsion in the early Jurassic while located in an immature-to-mature zone. The GMDH–DE model effectively estimated Tmax with high coefficient of determination (R = 0.9946), low root mean square error (RMSE = 0.004), and mean absolute error (MAE = 0.006) during training. When tested on unseen data, the GMDH–DE model yielded an R of 0.9703, RMSE of 0.017, and MAE of 0.025. Moreover, GMDH–DE reduced the computational time by 94% during training and 87% during testing. The results demonstrated the model’s exceptional reliability compared to the benchmark methods such as artificial neural network–particle swarm optimization and principal component analysis coupled with artificial neural network. The GMDH–DE Tmax model offers a unique and independent approach for rapid real-time determination of Tmax values in organic matter, promoting efficient resource assessment in oil and gas exploration.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know