An analytical flow injection system to measure glutamate in microdialysis samples based on an enzymatic reaction and electrochemical detection
Neurochemical Research, ISSN: 0364-3190, Vol: 33, Issue: 8, Page: 1592-1598
2008
- 15Citations
- 9Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Citations15
- Citation Indexes15
- 15
- CrossRef11
- Captures9
- Readers9
Article Description
Glutamate (Glu) is the main excitatory neurotransmitter in the brain for which several methods have been developed to measure this compound in extracellular brain fluids. Most of these techniques are based on coupling microdialysis to HPLC and they have a resolution time of about 10 min. Here, we present a different approach to measure Glu with a resolution of about 1 min per microdialysis sample, enabling a better relationship to be established between EEG activity and biochemical changes. This new setup was used to determine the time delay between the tip of the microdialysis probe and the site of sample collection, and was accurate to within seconds. Indeed, the measurement of Glu concentrations was linear. Administration of 4-aminopyridine was used to provoke seizure convulsions and under these conditions, biochemical changes and EEG activity were evaluated. These experimental data support the key role of Glu in the initiation of a seizure convulsion. © 2008 Springer Science+Business Media, LLC.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=46249106287&origin=inward; http://dx.doi.org/10.1007/s11064-008-9704-y; http://www.ncbi.nlm.nih.gov/pubmed/18427985; http://link.springer.com/10.1007/s11064-008-9704-y; http://www.springerlink.com/index/10.1007/s11064-008-9704-y; http://www.springerlink.com/index/pdf/10.1007/s11064-008-9704-y; https://dx.doi.org/10.1007/s11064-008-9704-y; https://link.springer.com/article/10.1007/s11064-008-9704-y
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know