Streptozotocin-Induced Diabetic Rats Showed a Differential Glycine Receptor Expression in the Spinal Cord: A GlyR Role in Diabetic Neuropathy
Neurochemical Research, ISSN: 1573-6903, Vol: 49, Issue: 3, Page: 684-691
2024
- 3Citations
- 5Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In the spinal cord, attenuation of the inhibitory action of glycine is related to an increase in both inflammatory and diabetic neuropathic pain; however, the glycine receptor involvement in diabetic neuropathy has not been reported. We determined the expression of the glycine receptor subunits (α1–α3 and β) in streptozotocin-induced diabetic Long–Evans rats by qPCR and Western blot. The total mRNA and protein expression (whole spinal cord homogenate) of the α1, α3, and β subunits did not change during diabetes; however, the α2 subunit mRNA, but not the protein, was overexpressed 45 days after diabetes induction. By contrast, the synaptic expression of the α1 and α2 subunits decreased in all the studied stages of diabetes, but that of the α3 subunit increased on day 45 after diabetes induction. Intradermal capsaicin produced higher paw-licking behavior in the streptozotocin-induced diabetic rats than in the control animals. In addition, the nocifensive response was higher at 45 days than at 20 days. During diabetes, the expression of the glycine receptor was altered in the spinal cord, which strongly suggests its involvement in diabetic neuropathy.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85177789397&origin=inward; http://dx.doi.org/10.1007/s11064-023-04058-9; http://www.ncbi.nlm.nih.gov/pubmed/38017313; https://link.springer.com/10.1007/s11064-023-04058-9; https://dx.doi.org/10.1007/s11064-023-04058-9; https://link.springer.com/article/10.1007/s11064-023-04058-9
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know