Landslide susceptibility mapping of Gdynia using geographic information system-based statistical models
Natural Hazards, ISSN: 1573-0840, Vol: 107, Issue: 1, Page: 639-674
2021
- 29Citations
- 46Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This work aims to prepare a reliable landslide susceptibility model and to analyse the factors contributing to landslides in a dynamic environment by considering the city of Gdynia, Poland as a case study. Geological, geomorphological, hydrological, hydrogeological, and anthropogenic predisposing factors are considered using geographic information systems. Ground types at different depths (1 m and 4 m b.g.l.) are used in the statistical susceptibility assessment for the first time. Landslide susceptibility maps are developed using two techniques in presenting landslides, 13 conditioning factors, and three statistical methods: landslide index, weight of evidence, and logistic regression. The considered factors have an influence on mass movement formation, but their roles are different. Many of these passive factors are interrelated and some of them are also related to active factors, i.e. triggers. Consideration of many thematic layers in the statistical approach allows for the selection of the most appropriate geo-environmental variables. The most significant conditioning factors that affect the likelihood of landsliding include land use and land cover as well as topography. The susceptibility maps generated by the index model and many interrelated passive factors appear to be over-predicted. The logistic regression model and only independent controlling factors (slope angle, slope aspect, and lithology) are sufficient to compile a reliable susceptibility map of Gdynia. Prediction rate curve plots show that the susceptibility map produced using logistic regression exhibits the highest prediction accuracy. The results emphasize the need to check independence in the selection of instability factors and the use of an independent subset of landslides for validation.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85101855195&origin=inward; http://dx.doi.org/10.1007/s11069-021-04599-8; https://link.springer.com/10.1007/s11069-021-04599-8; https://link.springer.com/content/pdf/10.1007/s11069-021-04599-8.pdf; https://link.springer.com/article/10.1007/s11069-021-04599-8/fulltext.html; https://dx.doi.org/10.1007/s11069-021-04599-8; https://link.springer.com/article/10.1007/s11069-021-04599-8
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know