An Australian convective wind gust climatology using Bayesian hierarchical modelling
Natural Hazards, ISSN: 1573-0840, Vol: 118, Issue: 3, Page: 2037-2067
2023
- 11Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures11
- Readers11
- 11
Article Description
To quantify the hazard or risks associated with severe convective wind gusts, it is necessary to have a reliable and spatially complete climatology of these events. The coupling of observational and global reanalysis (ERA-Interim) data over the period 2005–2015 is used here to facilitate the development of a spatially complete convective wind gust climatology for Australia. This is done through the development of Bayesian Hierarchical models that use both weather station-based wind gust observations and seasonally averaged severe weather indices (SWI), calculated using reanalysis data, to estimate seasonal gust frequencies across the country while correcting for observational biases specifically, the sparse observational network to record events. Different SWI combinations were found to explain event counts for different seasons. For example, combinations of Lifted Index and low level wind shear were found to generate the best results for autumn and winter. While for spring and summer, the composite Microburst Index and the combination of most unstable CAPE and 0–1 km wind shear were found to be most successful. Results from these models showed a minimum in event counts during the winter months, with events that do occur mainly doing so along the southwest coast of Western Australia or along the coasts of Tasmania and Victoria. Summer is shown to have the largest event counts across the country, with the largest number of gusts occurring in northern Western Australia extending east into the Northern Territory with another maximum over northeast New South Wales. Similar trends were found with an extended application of the models to the period 1979–2015 when utilizing only reanalysis data as input. This implementation of the models highlights the versatility of the Bayesian hierarchical modelling approach and its ability, when trained, to be used in the absence of observations.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85167351224&origin=inward; http://dx.doi.org/10.1007/s11069-023-06078-8; http://www.ncbi.nlm.nih.gov/pubmed/37664008; https://link.springer.com/10.1007/s11069-023-06078-8; https://dx.doi.org/10.1007/s11069-023-06078-8; https://link.springer.com/article/10.1007/s11069-023-06078-8
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know