Forest fire mapping: a comparison between GIS-based random forest and Bayesian models
Natural Hazards, ISSN: 1573-0840, Vol: 120, Issue: 7, Page: 6569-6592
2024
- 4Citations
- 29Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In recent decades, fires in natural ecosystems, particularly forests and rangelands, have emerged as a significant threat. To address this challenge, our study aims to identify and prioritize forest fire-prone areas while highlighting key environmental and anthropogenic factors contributing to forest fires in Iran’s Firouzabad region, Fars province. We compiled a forest fire incident map using data from the Data Center of the Natural Resources Department in Fars province, cross-referenced with field surveys. We examined 80 forest fire sites, randomly divided into a “training dataset” (70%) and a “validation dataset” (30%). We created “Forest Fire Susceptibility” (FFS) maps using GIS-based Bayesian and Random Forest (RF) methodologies, incorporating twelve unique environmental and human-induced variables. The performance of these methodologies was evaluated using the “Area Under the Curve-AUC.” RF outperformed the Bayesian model with AUC scores of 0.876 and 0.807, respectively. The RF model identified 37.86% of the area as having a high fire risk, compared to the Bayesian model’s estimate of 48.46%. Key factors influencing fire occurrences included elevation, mean annual precipitation, distance to roads, and mean annual temperature. Conversely, variables such as slope direction, topographic wetness index, and slope percent had a lesser impact. Given the presence of at-risk flora and fauna species in the area, our findings provide essential tools for pinpointing high fire susceptibility zones, aiding regional authorities in implementing preventive measures to mitigate fire hazards in forest ecosystems. In conclusion, our methodologies allow for the rapid creation of contemporary fire susceptibility maps based on fresh data.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know