Steganography-based voice hiding in medical images of COVID-19 patients
Nonlinear Dynamics, ISSN: 1573-269X, Vol: 105, Issue: 3, Page: 2677-2692
2021
- 13Citations
- 21Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A novel image steganography technique in order to hide the ciphered voice data has been suggested in this work. The doctor’s voice comments belonging to a coronavirus disease 2019 (COVID-19) patient are hidden in a medical image in order to protect the patient information. The introduced steganography technique is based on chaos theory. Firstly, the voice comments of the doctor are converted to an image and secondly, they are ciphered utilizing the suggested encryption algorithm based on a chaotic system. Then, they are embedded into the cover medical image. A lung angiography dual-energy computed tomography (CT) scan of a COVID-19 patient is used as a cover object. Numerical and security analyses of steganography method have been performed in MATLAB environment. The similarity metrics are calculated for R, G, B components of cover image and stego image as visual quality analysis metrics to examine the performance of the introduced steganography procedure. For a 512 × 512 pixel cover image, SSIM values are obtained as 0.8337, 0.7926, and 0.9273 for R, G, B components, respectively. Moreover, security analyses which are differential attack, histogram, information entropy, correlation of neighboring pixels and the initial condition sensitivity are carried out. The information entropy is calculated as 7.9993 bits utilizing the suggested steganography scheme. The mean value of the ten UACI and NPCR values are obtained as 33.5688% and 99.8069%, respectively. The results of security analysis have revealed that the presented steganography procedure is able to resist statistical attacks and the chaotic system-based steganography scheme shows the characteristics of the sensitive dependence on the initial condition and the secret key. The proposed steganography method which is based on a chaotic system has superior performance in terms of being robust against differential attack and hiding encrypted voice comments of the doctor. Moreover, the introduced algorithm is also resistant against exhaustive, known plaintext, and chosen plaintext attacks.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85111112934&origin=inward; http://dx.doi.org/10.1007/s11071-021-06700-z; http://www.ncbi.nlm.nih.gov/pubmed/34316095; https://link.springer.com/10.1007/s11071-021-06700-z; https://dx.doi.org/10.1007/s11071-021-06700-z; https://link.springer.com/article/10.1007/s11071-021-06700-z
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know