Study on impact characteristics of electric powertrain in regenerative braking process
Nonlinear Dynamics, ISSN: 1573-269X, Vol: 109, Issue: 4, Page: 2459-2477
2022
- 4Citations
- 6Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Electromagnetic torque reversal may lead to gear impact during regenerative braking of electric vehicles. To simulate the dynamic response of gear transmission during impact, an electromechanical non-smooth model is established by combining the permanent magnet synchronous motor model with the gear transmission model. In this model, the coast-side mesh stiffness and impact damping are further coupled based on considering the drive-side mesh stiffness, meshing damping, and electromagnetic characteristics. The theoretical model is validated against an experimental platform. The mechanism of gear impact is revealed through the analysis of the gear contact force. Furthermore, the effects of driving status and internal excitations on the impact characteristics are studied. The results show that the initial braking speed and regenerative braking torque greatly influence the impact times and impact force. The impact times for various backlashes change little. Changing rotor inertia and torsional damping can effectively improve impact characteristics. The research provides theoretical support for dynamic load study and life prediction of the electric powertrain.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know