Numerical and experimental investigations on a friction ring damper for a flywheel
Nonlinear Dynamics, ISSN: 1573-269X, Vol: 111, Issue: 3, Page: 2327-2351
2023
- 2Citations
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A damping strategy using a friction ring damper for an industrial flywheel was numerically and experimentally investigated. The friction ring damper, located on the arms of the flywheel, was experimentally found to effectively reduce the vibration amplitude of the flywheel. The vibration energy was dissipated when relative motions occur at the friction contact interfaces. Nonlinear dynamic analysis based on a lumped-parameter model of a flywheel equipped with a friction ring damper was conducted. The normal load, N, was used to evaluate the damping performance of the friction ring damper. For several values of N, steady-state responses under harmonic excitation and nonlinear modes were obtained using the harmonic balance method combined with the alternating frequency–time domain method. The forced response analysis proved the existence of an optimal value of N, which could minimize the vibration amplitude of the flywheel. The nonlinear modal analysis showed that all the damping ratio–frequency curves were completely coincident even for different values of N, and the frequency corresponding to the maximum damping ratio was equal to the frequency at the intersection of the forced response curves under the fully slip state and the fully stick state of the friction contact interface. By analyzing the behaviors of the friction contact interface, it was shown that the friction contact interface provides damping in the combined stick–slip state. The forced response under random excitation was calculated using the Runge–Kutta method, and the friction interface behaviors were analyzed. Finally, spectral testing was conducted to verify the numerical results.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know