Folding angle and wing flexibility influence the flight performance of origami winged fruits
Nonlinear Dynamics, ISSN: 1573-269X, Vol: 112, Issue: 13, Page: 10995-11011
2024
- 1Citations
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Winged fruits possess a unique flight mechanism relying on simple geometric structures rather than neuromuscular control. This study proposes an innovative approach using origami techniques to create three-winged model fruits, serving as a proxy for understanding the flight dynamics of natural winged fruits. Paper is employed to simulate inherent wing flexibility, with the option to add plastic frames for rigidity. We comprehensively investigate the free fall motion of both rigid and flexible winged fruits through experimental and numerical analyses. Velocity–time curves reveal a three-stage descent pattern—acceleration, deceleration, and steady states. The overshoot phenomenon is attributed to rapid lift increase due to leading-edge vortices attaching stably to the wings. This insight sheds light on aerodynamics governing fruit flight. Compared with rigid wings, flexible wings exhibit two key properties—slower descent and higher self-orienting capability—that facilitate a more stable and longer-distance dispersal of seeds under crosswind conditions. Our study demonstrates the potential benefits of flexible wings in natural seed distribution. This study advances our understanding of winged fruit flight dynamics, utilizing origami as a powerful tool for biomimetic investigations. The findings have broad implications, from improving aerodynamic designs to developing efficient micro air vehicles and electronic microfliers, and understanding seed dispersal evolution. Graphical abstract: (Figure presented.).
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know