PlumX Metrics
Embed PlumX Metrics

An iterated quasi-interpolation approach for derivative approximation

Numerical Algorithms, ISSN: 1572-9265, Vol: 85, Issue: 1, Page: 255-276
2020
  • 6
    Citations
  • 0
    Usage
  • 1
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Given discrete function values sampled at uniform centers, the iterated quasi-interpolation approach for approximating the m th derivative consists of two steps. The first step adopts m successive applications of the operator DQ (the quasi-interpolation operator Q first, and then the differentiation operator D) to get approximated values of the m th derivative at uniform centers. Then, by one further application of the quasi-interpolation operator Q to corresponding approximated derivative values gives the final approximation of the m th derivative. The most salient feature of the approach is that it approximates all derivatives with the same convergence rate. In addition, it is valid for a general multivariate function, compared with the existing iterated interpolation approaches that are only valid for periodic functions, so far. Numerical examples of approximating high-order derivatives using both the iterated and direct approach based on B-spline quasi-interpolation and multiquadric quasi-interpolation are presented at the end of the paper, which demonstrate that the iterated quasi-interpolation approach provides higher approximation orders than the corresponding direct approach.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know