Iterate averaging, the Kalman filter, and 3DVAR for linear inverse problems
Numerical Algorithms, ISSN: 1572-9265, Vol: 92, Issue: 2, Page: 1105-1125
2023
- 1Citations
- 1Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
It has been proposed that classical filtering methods, like the Kalman filter and 3DVAR, can be used to solve linear statistical inverse problems. In the work of Iglesias, Lin, Lu, and Stuart (Commun. Math. Sci. 15(7):1867–1896, ??), error estimates were obtained for this approach. By optimally tuning a regularization parameter in the filters, the authors were able to show that the mean squared error could be systematically reduced. Building on the aforementioned work of Iglesias, Lin, Lu, and Stuart, we prove that by (i) considering the problem in a weaker norm and (ii) applying simple iterate averaging of the filter output, 3DVAR will converge in mean square, unconditionally on the choice of parameter. Without iterate averaging, 3DVAR cannot converge by running additional iterations with a fixed choice of parameter. We also establish that the Kalman filter’s performance in this setting cannot be improved through iterate averaging. We illustrate our results with numerical experiments that suggest our convergence rates are sharp.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know