Do equidistant energy levels necessitate a harmonic potential?
Optical and Quantum Electronics, ISSN: 1572-817X, Vol: 53, Issue: 7
2021
- 2Citations
- 4Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Experimental results from literature show equidistant energy levels in thin Bi films on surfaces, suggesting a harmonic oscillator description. Yet this conclusion is by no means imperative, especially considering that any measurement only yields energy levels in a finite range and with a nonzero uncertainty. Within this study we review isospectral potentials from the literature and investigate the applicability of the harmonic oscillator hypothesis to recent measurements. First, we describe experimental results from literature by a harmonic oscillator model, obtaining a realistic size and depth of the resulting quantum well. Second, we use the shift-operator approach to calculate anharmonic non-polynomial potentials producing (partly) equidistant spectra. We discuss different potential types and interpret the possible modeling applications. Finally, by applying nth order perturbation theory we show that exactly equidistant eigenenergies cannot be achieved by polynomial potentials, except by the harmonic oscillator potential. In summary, we aim to give an overview over which conclusions may be drawn from the experimental determination of energy levels and which may not.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85110311631&origin=inward; http://dx.doi.org/10.1007/s11082-021-03015-6; https://link.springer.com/10.1007/s11082-021-03015-6; https://link.springer.com/content/pdf/10.1007/s11082-021-03015-6.pdf; https://link.springer.com/article/10.1007/s11082-021-03015-6/fulltext.html; https://dx.doi.org/10.1007/s11082-021-03015-6; https://link.springer.com/article/10.1007/s11082-021-03015-6
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know