Sequential Amplification of Amino Acid Enantiomeric Excess by Conglomerate and Racemic Compound: Plausible Prebiotic Route Towards Homochirality
Origins of Life and Evolution of Biospheres, ISSN: 1573-0875, Vol: 53, Issue: 3-4, Page: 175-185
2023
- 2Citations
- 6Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Some amino acids can crystallize from aqueous solution both as conglomerates and racemic compounds: under high supersaturation following rapid evaporation, dissolved amino acids draining over porous sand-bars behave like conglomerates whereas in the resulting deeper pool of water, amino acid solution switches to the more common racemic-compound system. We show how the two forms might have sequentially combined under prebiotic conditions to form the basis of homochirality. The paper is a quantitative analysis of enantiomeric excess (EE) this dual behavior of amino acids is capable of producing in tandem: Initial amplification by preferential crystallization (PC) in conglomerate system (CS) followed by further amplification in the racemic compound system (RCS). Using aspartic acid as a model system, ternary phase diagram shows that a minimum supersaturation of 1.65 is required in the CS for the solution-EE to reach its maximum value of 50% at the RCS eutectic point. A relationship is derived for the dependence of this threshold supersaturation on the eutectic solubilities of CS and RCS. For given supersaturation in CS, a relation is also derived for minimum solution-EE that must be produced by PC before CS switches to RCS. Required PC-induced threshold solution-EE of 0.194, 0.070, 0.033 is calculated for supersaturation of 2, 5, 10 respectively in aspartic acid. Switching from CS to RCS further amplifies solution-EE, resulting in an overall growth of aspartic acid solution EE from near-zero in CS to around 50% in RCS.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85174070750&origin=inward; http://dx.doi.org/10.1007/s11084-023-09642-1; http://www.ncbi.nlm.nih.gov/pubmed/37831272; https://link.springer.com/10.1007/s11084-023-09642-1; https://dx.doi.org/10.1007/s11084-023-09642-1; https://link.springer.com/article/10.1007/s11084-023-09642-1
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know