Internal Oxidation of Fe–Mn–Cr Steels, Simulations and Experiments
Oxidation of Metals, ISSN: 0030-770X, Vol: 90, Issue: 1-2, Page: 237-253
2018
- 16Citations
- 23Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
A multi-element and multi-phase internal oxidation model that couples thermodynamics with kinetics is developed to predict the internal oxidation behaviour of Fe–Mn–Cr steels as a function of annealing time and oxygen partial pressure. To validate the simulation results, selected Fe–Mn–Cr steels were annealed at 950 °C for 1–16 h in a gas mixture of Ar with 5 vol% H and dew points of − 30, − 10 and 10 °C. The measured kinetics of internal oxidation as well as the concentration depth profiles of internal oxides in the annealed Fe–Mn–Cr steels are in agreement with the predictions. Internal MnO and MnCrO are formed during annealing, and both two oxides have a relatively low solubility product. Local thermodynamic equilibrium is established in the internal oxidation zone of Fe–Mn–Cr steels during annealing and the internal oxidation kinetics are solely controlled by diffusion of oxygen. The internal oxidation of Fe–Mn–Cr steels follows the parabolic rate law. The parabolic rate constant increases with annealing dew point, but decreases with the concentration of the alloying elements.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85049568441&origin=inward; http://dx.doi.org/10.1007/s11085-018-9836-7; http://link.springer.com/10.1007/s11085-018-9836-7; http://link.springer.com/content/pdf/10.1007/s11085-018-9836-7.pdf; http://link.springer.com/article/10.1007/s11085-018-9836-7/fulltext.html; https://dx.doi.org/10.1007/s11085-018-9836-7; https://link.springer.com/article/10.1007/s11085-018-9836-7
Springer Nature
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know