PlumX Metrics
Embed PlumX Metrics

Coexpression network analysis associated with call of rice seedlings for encountering heat stress

Plant Molecular Biology, ISSN: 0167-4412, Vol: 84, Issue: 1-2, Page: 125-143
2014
  • 67
    Citations
  • 0
    Usage
  • 89
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

Article Description

Coexpression network analysis is useful tool for identification of functional association of coexpressed genes. We developed a coexpression network of rice from heat stress transcriptome data. Global transcriptome of rice leaf tissues was performed by microarray at three time points-post 10 and 60 min heat stress at 42 °C and 30 min recovery at 26 °C following 60 min 42 °C heat stress to investigate specifically the early events in the heat stress and recovery response. The transcriptome profile was significantly modulated within 10 min of heat stress. Strikingly, the number of up-regulated genes was higher than the number of down-regulated genes in 10 min of heat stress. The enrichment of GO terms protein kinase activity/protein serine threonine kinase activity, response to heat and reactive oxygen species in up-regulated genes after 10 min signifies the role of signal transduction events and reactive oxygen species during early heat stress. The enrichment of transcription factor (TF) binding sites for heat shock factors, bZIPs and DREBs coupled with up-regulation of TFs of different families suggests that the heat stress response in rice involves integration of various regulatory networks. The interpretation of microarray data in the context of coexpression network analysis identified several functionally correlated genes consisting of previously documented heat upregulated genes as well as new genes that can be implicated in heat stress. Based on the findings on parallel analysis of growth of seedlings, associated changes in transcripts of selected Hsps, genome-wide microarray profiling and the coexpression network analysis, this study is a step forward in understanding heat response of rice, the world's most important food crop. © 2013 Springer Science+Business Media Dordrecht.

Bibliographic Details

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know