High-sorgoleone producing sorghum genetic stocks suppress soil nitrification and NO emissions better than low-sorgoleone producing genetic stocks
Plant and Soil, ISSN: 1573-5036, Vol: 477, Issue: 1-2, Page: 793-805
2022
- 9Citations
- 24Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Purpose: Rapid nitrification leads to loss of nitrogen (N) fertilizer in agricultural systems. Plant produced/derived biological nitrification inhibitors (BNIs) are an effective eco-strategy to rein-in soil nitrification to improve crop-N uptake and nitrogen use efficiency (NUE) in production systems. Sorgoleone is the major component of hydrophobic-BNI-activity in sorghum roots. However, the role of genetic differences in sorgoleone production in reducing soil nitrification and NO emissions are not established. Methods: Two genetic-stocks of sorghum with high-sorgoleone (HS), and two with low-sorgoleone (LS) production from roots were grown using hydroponics in a plant-growth chamber, in soil in pots in a glasshouse, and in a field experiment. Release of hydrophilic-BNI activity from roots of HS and LS genetic stocks, sorgoleone levels in rhizosphere soils, soil nitrification rates, soil-nitrifier activity and NO emissions were measured to understand the interplay involving sorgoleone release, hydrophilic-BNI release from roots, soil nitrification, plant growth and N uptake. Results: HS-producing genetic-stocks showed higher hydrophilic-BNI-capacity compared to LS- producing genetic-stocks. Biomass production and N uptake were significantly higher in HS than in LS genetic-stocks. Glasshouse and field studies suggest that HS genetic stocks had stronger suppressive impact on soil-nitrifier-populations (ammonia-oxidizing archaea and ammonia-oxidizing bacteria), soil-nitrification, and soil-NO emissions than in LS genetic-stocks. Conclusion: These results demonstrate that HS sorghum genetic-stocks suppress soil nitrifier activity and can potentially reduce N losses from NOleaching and NO emissions more effectively than LS genetic-stocks.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know