Physicochemical fractionation reveals increased soil organic carbon storage in a wolfberry orchard under cover cropping
Plant and Soil, ISSN: 1573-5036
2024
- 1Citations
- 4Captures
- 1Mentions
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Most Recent News
Reports from State Key Laboratory Add New Data to Findings in Cover Crops (Physicochemical Fractionation Reveals Increased Soil Organic Carbon Storage In a Wolfberry Orchard Under Cover Cropping)
2024 DEC 18 (NewsRx) -- By a News Reporter-Staff News Editor at Food Daily News -- Fresh data on Agriculture - Cover Crops are presented
Article Description
Background and aims: Characterizing the responses of soil organic carbon (SOC) fractions to agricultural management practices is essential for understanding SOC stability in agroecosystems. To establish a rational soil management regime for wolfberry (Lycium barbarum L.) production, this study investigated the long-term effects of cover cropping with manure on the storage of SOC and its fractions in a wolfberry orchard in Ningxia, Northwest China. Methods: A field experiment was conducted using wolfberry grown as a monocrop or cover cropped with forage radish under zero, moderate, and high rates of animal manure. Results: After seven years of cover cropping, SOC concentrations in the topsoil (0–20 cm) were higher than those under monocropping, and the difference was most pronounced under moderate manure application. The annual SOC accumulation rates reached ~ 1.00 t haa under cover cropping with moderate and high manure application, and the SOC storage efficiency of exogenous organic carbon input was 33.0%. Cover cropping also increased the concentrations of unprotected coarse particulate organic carbon fraction, as well as physically protected particulate organic carbon, chemically protected clay-sized, and biochemically protected silt-sized fractions in the topsoil. Unprotected SOC was the predominant form of organic carbon accumulated. A positive linear association emerged between SOC stock and exogenous organic carbon input in the topsoil. Despite weak responses of SOC and its fractions in the subsoil (20–40 cm), their trends were basically consistent with those observed in the topsoil. Conclusions: Organic carbon inputs from multiple sources boosted SOC storage in the wolfberry orchard. Cover cropping with moderate manure application effectively improved SOC concentrations in the coarse and intra-aggregate particulate fractions, showing great potential for enhancing SOC storage. Future studies should delve deeper into the response mechanisms of SOC fractions from a microbiological perspective to decipher the role of cover crops and manure in the accumulation and transformation of SOC fractions.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know