PlumX Metrics
Embed PlumX Metrics

Effect of Reynolds number on heat transfer and flow for multi-oxide nanofluids using numerical simulation

Research on Chemical Intermediates, ISSN: 0922-6168, Vol: 39, Issue: 5, Page: 2197-2210
2013
  • 15
    Citations
  • 0
    Usage
  • 30
    Captures
  • 0
    Mentions
  • 0
    Social Media
Metric Options:   Counts1 Year3 Year

Metrics Details

  • Citations
    15
    • Citation Indexes
      15
  • Captures
    30

Article Description

A numerical simulation model for laminar flow of nanofluids in a pipe with constant heat flux at the wall has been built to study the effect of Reynolds number on heat transfer and pressure loss. The investigation was performed for metallic oxide and multi-oxide nanoparticles suspended in water. The thermal conductivity and dynamic viscosity were measured for a range of temperature (10-60 C) and volume fraction of multi-oxide nanofluid. Comparison of the thermal conductivity for monocular oxide and multi-oxide nanofluids reveals a new way to control the enhancement in nanofluid conductivity. The numerical results obtained were compared with existing well-established correlations. The predictions of the Nusselt number for nanofluids are in agreement with the Shah correlation, and the deviation in the results is less than 1 %. It is found that the pressure loss increases with the Reynolds number, nanoparticle density, and volume fraction for multi-oxide nanoparticles. However, the flow demonstrates enhancement in heat transfer which improves with increasing Reynolds number of the flow. © 2012 Springer Science+Business Media B.V.

Provide Feedback

Have ideas for a new metric? Would you like to see something else here?Let us know