Online resources for the prediction of biological activity of organic compounds
Russian Chemical Bulletin, ISSN: 1573-9171, Vol: 65, Issue: 2, Page: 384-393
2016
- 20Citations
- 32Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Online resources (PASS Online, SuperPred, SwissTargetPrediction and DRAR-CPI) for the prediction of biological activity of organic compounds from their structural formulas were considered. Based on a test set of drugs approved by 2014, the accuracies of predictions were compared. The four web resources can be arranged with respect to the quality of prediction (sensitivity, S) as follows: SwissTargetPrediction (S = 0.37) < DRAR-CPI (S = 0.41) < Super-Pred (S = 0.53) < PASS Online (S = 0.95). A conclusion was made that PASS Online employs superior machine learning algorithms based on MNA descriptors and Bayessian classifier in contrast to the similarity-based methods used in SuperPred and SwissTargetPrediction or the molecular docking methods used in DRAR-CPI. Possible reasons for the low prediction quality of SuperPred, SwissTargetPrediction, and DRAR-CPI are discussed and the development perspectives of this area of computational chemistry are given.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85013790548&origin=inward; http://dx.doi.org/10.1007/s11172-016-1310-6; http://link.springer.com/10.1007/s11172-016-1310-6; http://link.springer.com/content/pdf/10.1007/s11172-016-1310-6.pdf; http://link.springer.com/article/10.1007/s11172-016-1310-6/fulltext.html; https://dx.doi.org/10.1007/s11172-016-1310-6; https://link.springer.com/article/10.1007/s11172-016-1310-6
Springer Nature
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know