Automatic noise reduction of domain-specific bibliographic datasets using positive-unlabeled learning
Scientometrics, ISSN: 1588-2861, Vol: 128, Issue: 2, Page: 1187-1204
2023
- 12Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures12
- Readers12
- 12
Article Description
Constructing a bibliographic dataset is fundamental for domain analysis in bibliometric research. However, irrelevant documents(so-called “impurities”) in the initial domain dataset are inevitable and difficult to identify, requiring considerable human efforts to eliminate. To solve this problem, we propose a weak-supervised noise reduction approach based on the Positive-Unlabeled Learning (PU-Learning) algorithm to clean the initial bibliographic dataset automatically. The basic idea is to use a batch of “absolutely positive sample sets” already available in the dataset to obtain a collection of “reliable negative sample sets,” based on which a training set can be constructed for the downstream supervised classification. This paper conducted a comparative experiment using the Artificial Intelligence (AI) domain of the US National Technical Reports Library (NTIS) report as an example. We compared schemes with different variables to explore the influence of various technical aspects on the final noise reduction performance. Our approach achieved significant improvements compared with the similarity-based unsupervised baseline; the recall rose from 0.3742 to 0.8103, and the precision rose from 0.6621 to 0.7383. We found that the impact of document representation algorithms is crucial while classification strategies and s_ratio in PU-Learning are not. Our approach needs no manual annotation data and thus can provide powerful help for bibliometric researchers to construct high-quality bibliographic datasets.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know