A theoretical characterization of reactions of HOOO radical with guanine: formation of 8-oxoguanine
Structural Chemistry, ISSN: 1040-0400, Vol: 29, Issue: 4, Page: 1109-1118
2018
- 7Citations
- 3Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Hydrogen trioxide (HOOO) radical and other polyoxides of general formula, ROR (where R stands for hydrogen, other atoms or groups and n ≥ 3), are believed to be key intermediates in atmospheric chemistry and biological oxidation reactions. In this contribution, DFT calculations using M06-2X density functional and the 6-31G(d,p) and 6-311+G(d,p) basis sets have been carried out to study different reactions of HOOO radical with guanine such as addition of HOOO radical at the C2, C4, C5, and C8 sites of guanine, abstraction of hydrogen atoms (H1, H2a, and H8) of guanine, and the mechanisms of oxidation of guanine with HOOO radical yielding 8-oxoguanine(a highly mutagenic derivative of guanine) and its radical in gas phase and aqueous media. The polarizable continuum model (PCM) has been used for solvation calculations in aqueous media. Our calculations reveal that the C8 site of guanine is the most reactive site for addition of HOOO radical, and adduct formed at this site would be appreciably stable. The rate constant (=KbThe−ΔEbRT) at the C8 site is found to be 6.07 × 10 (2.89 × 10) s at the M06-2X/6-311+G(d,p) level of theory in gas phase (aqueous media). The calculated barrier energy and heat of formation of hydrogen abstraction reactions show that HOOO radical would not abstract hydrogen atoms of guanine. Oxidation of guanine with HOOO radical can occur following two schemes (Scheme 1 and Scheme 2). It is found that formation of 8-oxoguanine radical via Scheme 1 would predominate over formation of 8-oxoguanine via Scheme 2, in a reaction of HOOO radical and guanine. Thus, HOOO radical can be treated as a member of reactive oxygen species (ROS) which play key roles in biological oxidation reactions, in agreement with previous literature reports.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85042376998&origin=inward; http://dx.doi.org/10.1007/s11224-018-1095-3; http://link.springer.com/10.1007/s11224-018-1095-3; http://link.springer.com/content/pdf/10.1007/s11224-018-1095-3.pdf; http://link.springer.com/article/10.1007/s11224-018-1095-3/fulltext.html; https://dx.doi.org/10.1007/s11224-018-1095-3; https://link.springer.com/article/10.1007/s11224-018-1095-3
Springer Nature
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know