A physical interpretation of Lewis’ discrepancy between personal and external time in time travels
Synthese, ISSN: 1573-0964, Vol: 197, Issue: 11, Page: 4847-4866
2020
- 1Citations
- 2Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
This paper deals with those time travels mostly considered by physics, namely those in the form of the so-called closed timelike curves. Some authoritative scholars have raised doubts about the status of these journeys as proper time travels. By using David Lewis’ famous definition of time travels proposed in 1976, we show that this proper status may actually be recovered, at least in some cosmological contexts containing spacetime regions, such as those concerning black holes described by the Kerr–Newman metric, that allow the formation of local closed curves. But, the mathematical incompatibility between ordinary black hole solutions to Einstein field equations and the cosmological solutions induces us to take into consideration the more general issue pertaining to the slippery interplay between models related to local and global aspects of the world, highlighting, in particular, the different notions of time that these domains inevitably imply. This leads us to think that time is not a univocal entity of the world, but is a scale-related characteristic which claims the adoption, when investigating its ontological status, of a sort of regional approach. We also briefly dwell upon the most appropriate form of realism that such a kind of dispute between local and global models may involve.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know