Differences in DNA methylation, DNA structure and embryogenesis-related gene expression between embryogenic and non embryogenic lines of Pinus radiata D. don
Plant Cell, Tissue and Organ Culture, ISSN: 1573-5044, Vol: 130, Issue: 3, Page: 521-529
2017
- 25Citations
- 43Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Pinus radiata is the most important conifer species for commercial forestry in countries such as Australia, New Zeeland and Chile. Nowadays, SE (somatic embryogenesis) is considered the most promising in vitro method for large scale vegetative propagation of woody plants. The understanding of the molecular basis of SE is in its very beginning and a number of embryogenesis-related genes have been identified in conifers. Among the molecular mechanisms involved in regulation of SE, DNA methylation, which is an epigenetic modification associated with transcriptional silencing, has shown to be a pivotal factor controlling gene expression. In this work, we studied the morphological and molecular differences between cell lines previously characterized in terms of their embryogenic potential as embryogenic (E) and non embryogenic (NE), obtained from immature zygotic embryos of P. radiata. In contrast to E lines, NE lines were composed of multicellular aggregates lacking polarity, and they were characterized by the presence of significantly lower transcript levels of embryogenesis-related genes and higher global DNA methylation. Furthermore, the detection of vibrational markers of DNA conformation indicated that DNA samples obtained from E lines presented the common B-DNA conformation, while NE samples presented Z-conformation. Taken together, our results highlight the role of epigenetic mechanisms such as DNA methylation in regulating the expression of embryogenesis- related genes, having impact on the embryo patterning and cell differentiation.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85020552086&origin=inward; http://dx.doi.org/10.1007/s11240-017-1242-3; http://link.springer.com/10.1007/s11240-017-1242-3; http://link.springer.com/content/pdf/10.1007/s11240-017-1242-3.pdf; http://link.springer.com/article/10.1007/s11240-017-1242-3/fulltext.html; https://dx.doi.org/10.1007/s11240-017-1242-3; https://link.springer.com/article/10.1007/s11240-017-1242-3
Springer Nature
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know