Multi-Camera Multi-Target Tracking with Space-Time-View Hyper-graph
International Journal of Computer Vision, ISSN: 1573-1405, Vol: 122, Issue: 2, Page: 313-333
2017
- 51Citations
- 75Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
Incorporating multiple cameras is an effective solution to improve the performance and robustness of multi-target tracking to occlusion and appearance ambiguities. In this paper, we propose a new multi-camera multi-target tracking method based on a space-time-view hyper-graph that encodes higher-order constraints (i.e., beyond pairwise relations) on 3D geometry, appearance, motion continuity, and trajectory smoothness among 2D tracklets within and across different camera views. We solve tracking in each single view and reconstruction of tracked trajectories in 3D environment simultaneously by formulating the problem as an efficient search of dense sub-hypergraphs on the space-time-view hyper-graph using a sampling based approach. Experimental results on the PETS 2009 dataset and MOTChallenge 2015 3D benchmark demonstrate that our method performs favorably against the state-of-the-art methods in both single-camera and multi-camera multi-target tracking, while achieving close to real-time running efficiency. We also provide experimental analysis of the influence of various aspects of our method to the final tracking performance.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know