Temporal Variability and Potential Diffusion Characteristics of Dust Aerosol Originating from the Aral Sea Basin, Central Asia
Water, Air, and Soil Pollution, ISSN: 1573-2932, Vol: 227, Issue: 2
2016
- 42Citations
- 25Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The drastic desiccation of the Aral Sea has led to severe desertification of the former lake areas. Dust storms occur frequently, causing regional environmental degradation of the Aral basin and a serious ecological disaster. Knowledge of the temporal variability in dust emissions and the potential diffusion characteristics of dust aerosol originating from the Aral Sea basin in recent years are, however, lacking. To address this knowledge gap, we studied the interannual and intraannual changes in dust aerosol from the Aral Sea basin and its potentially seasonal diffusion characteristics from 2005 to 2013 using Ozone Monitoring Instrument (OMI) aerosol data (2005-2013) and the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model. Results show that the OMI aerosol index (AI) annual mean, standard deviation, median, and maximum values exhibit a strong increasing trend because of the continuous decrease in the water level since 2005. The annually mean OMI AI increases to 1.47 by 2013. Peak AI values are recorded in spring (March-May) and early winter (November-January of the following year), indicating notifying seasonal differences. The potential distance and height of air parcel trajectories to the northeast are greater than those to the west and south, whereas the air parcel trajectory proportion of the former is lower than that of the latter. The potential transport distance of dust aerosol to the northeast is greatest in spring and winter. This transport distance is less in autumn, with the minimum observed in summer. Dust transport distance to the west and south in different seasons is not significantly different. The present results may help in further understanding the emission, long-range transport, and deposition of dust from the dry lake bed of the Aral Sea as well as providing a motivation for the sensible use and protection of these tail-end lakes.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=84956699546&origin=inward; http://dx.doi.org/10.1007/s11270-016-2758-6; http://link.springer.com/10.1007/s11270-016-2758-6; http://link.springer.com/content/pdf/10.1007/s11270-016-2758-6; http://link.springer.com/content/pdf/10.1007/s11270-016-2758-6.pdf; http://link.springer.com/article/10.1007/s11270-016-2758-6/fulltext.html; https://dx.doi.org/10.1007/s11270-016-2758-6; https://link.springer.com/article/10.1007/s11270-016-2758-6
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know