Anticancer Drugs Gemcitabine, Letrozole, and Tamoxifen in Municipal Wastewater and Their Photodegradation in Laboratory-Scale UV Experiments
Water, Air, and Soil Pollution, ISSN: 1573-2932, Vol: 233, Issue: 8
2022
- 7Citations
- 20Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
The occurrence of three anticancer drugs (gemcitabine, letrozole, tamoxifen) was studied in wastewater samples from two local wastewater treatment plants (WWTPs) in Finland. Studied pharmaceuticals were selected, as anticancer drugs are potential to cause adverse effects on organisms even at low concentrations, but they are seldom included in the analysis of emerging contaminants. The concentration of anticancer drugs was determined by liquid chromatography-triple quadrupole mass spectrometer (LC–MS/MS). Tamoxifen and letrozole were detected from influent samples ranging from 0.5 to 5.0 ng/L, respectively. Letrozole was detected from effluent samples at a concentration up to 2.4 ng/L. Letrozole has been detected in wastewater effluent only once before, at a lower concentration of 0.28 ng/L. Gemcitabine was not detected in any of the samples. UV irradiation is used in many wastewater treatment plants to disinfect the effluent. Such tertiary treatment might degrade also these potentially harmful drugs and, therefore, photodegradation of the chosen pharmaceuticals was studied in laboratory-scale experiments. Tamoxifen showed high degradation rates, 94% in spiked wastewater with UV fluence 4830 mJ/cm and 98% in pure water with UV fluence 2520 mJ/cm, respectively. Letrozole showed the lowest degradation rates of 24% in wastewater and 34% in pure water, respectively. The degradation rate at the fluence level typical for UV disinfection stage of wastewater treatment plants was 37% for tamoxifen but only 5% for letrozole. To the best of the authors’ knowledge, this is the first report to show the effectiveness of UV irradiation to degrade letrozole.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know