Water quality prediction based on IGRA-ISSA-LSTM model
Water, Air, and Soil Pollution, ISSN: 1573-2932, Vol: 234, Issue: 3
2023
- 10Citations
- 11Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
It is essential to make an accurate prediction of the concentration of dissolved oxygen (DO), hydrogen ion concentration (pH), and potassium permanganate (KMnO4) in order to ensure the quality of the drinking water. The lack of monitoring data and the large fluctuation increase the difficulty of predicting DO, pH, and KMnO4 in the tide-sensing estuary. In this research, improved grey association analysis (IGRA) was provided to determine the correlation between DO, pH, KMnO4, and other water quality indicators, thereby resolving the dimension disaster problem of long short-term memory (LSTM). Furthermore, LSTM based on the improved sparrow search algorithm (ISSA) was established, and five LSTM parameters—learning rate, batch size, training times, hidden layer nodes, and fully connected hidden layer nodes—are automatically optimized, which could accurately predict the concentration of DO, pH, and KMnO4. Using the data from the Qiantang River Gate Observation Station from November 8, 2020, to June 27, 2021, 70% of which were training sets and 30% of which were test sets, predicted data for day 4. The results show that the coefficient of determination (R) of the IGRA-ISSA-LSTM model for DO, pH, and KMnO4 were 0.92, 0.93, and 0.726, respectively, which are greater than that of IGRA-BP model, IGRA-LSTM model, and IGRA-SSA-LSTM model. Therefore, this research provides technical support for water quality management in tidal estuaries.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know