A Comprehensive Review on Groundwater Contamination Due to Sewer Leakage: Sources, Detection Techniques, Health Impacts, Mitigation Methods
Water, Air, and Soil Pollution, ISSN: 1573-2932, Vol: 235, Issue: 1
2024
- 7Citations
- 37Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Review Description
Groundwater pollution poses a significant threat globally, particularly in developing countries where inadequate sanitation facilities contribute to growing concerns about contamination from sewer leaks. Hence, the objective of this study is to present a comprehensive review, offering insights into diverse aspects of sewer leaks and their impacts on the urban groundwater system. This includes an exploration of leak sources, methods for leak detection, quantification approaches, analysis of contaminants in sewage along with their health effects, and strategies for mitigating both sewer leaks and groundwater contamination. This review addresses various factors leading to sewer infrastructure damage, emphasizing its importance in effective maintenance strategies. In this review, a range of contaminants released from sewer leaks were outlined, ranges from emerging contaminants to heavy metals that poses risk to the human health and environment. Further it evaluates various methods for detecting sewer leaks, emphasizing advancements in water quality analysis, visual, electromagnetic, and acoustics techniques. This research assesses diverse techniques for quantifying sewage leaks, including mass balance and wastewater balance and concludes pinpointing specific leak hotspots remains challenging. Furthermore, an appraisal of mitigation measures was also conducted, determining that rehabilitation serves as a more effective approach to stop leaks at their source. This paper delves into groundwater treatment methods, highlighting the difficulties in achieving optimal water quality and reveals that technologies such as Permeable Reactive Barrier and advanced oxidation processes exhibit potential in effectively removing trace-level pollutants. Overall, the review underscores the importance of understanding, detecting, and mitigating sewer leakage for the health and sustainability of groundwater systems.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know