Structure-based functional fitness analyses of carbapenemase variants identified among pathogenic carbapenem-resistant Gram-negative bacteria
World Journal of Microbiology and Biotechnology, ISSN: 1573-0972, Vol: 36, Issue: 9, Page: 129
2020
- 5Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures5
- Readers5
Article Description
Carbapenemase-mediated carbapenem resistance is a major public health concerns worldwide. In the present study, prevalence of circulating carbapenemases was estimated among carbapenem-resistant clinical isolates using PCR and sequencing. Diameters of zone of inhibition (ZDs) were compared for imipenem, meropenem and ertapenem among single carbapenemase producing isolates. Structure-based functional fitness of those carbapenemases was predicted through several in silico analyses. Approximately, 63.76% isolates demonstrated carbapenem resistance, of which 39.13% harboured carbapenemases like bla (33.23%), bla-like (0.31%), bla (4.35%), bla (4.04%), bla (6.85%), bla (16.50%), bla (3.88%), bla (2.91%) and bla (1.94%). Omega values indicated selection pressure over bla, bla and bla. Protein structural dynamics predicted NDM-1 and KPC-2 to have the highest and least flexibility, indicating differences in β-lactam binding and catalytic efficiency. Increased requirement of free folding energy, improved solvent accessibility and decreased melting temperatures among NDM-1-like, OXA-181, OXA-66, OXA-69 and OXA-104 predicted functional improvement over their ancestral variants. NDM-1-like carbapenemases demonstrated improvement in binding stability, affinity and catalysis of meropenem than that of NDM-1. Catalytic activity of imipenem was predicted to improve among OXA-181, which could be correlated with more than 1.5 folds smaller ZDs around imipenem disc, than that of meropenem/ertapenem, among OXA-181 producing isolates. However, OXA-66 indicated greater binding stability and affinity for imipenem and meropenem. This study indicated structural/functional convergence as well as divergence among several carbapenemase variants and provided useful insights into carbapenemase-mediated carbapenem resistance that might help in identifying appropriate treatment regimen for bacterial infections.
Bibliographic Details
http://www.scopus.com/inward/record.url?partnerID=HzOxMe3b&scp=85088468145&origin=inward; http://dx.doi.org/10.1007/s11274-020-02905-3; http://www.ncbi.nlm.nih.gov/pubmed/32712930; https://link.springer.com/10.1007/s11274-020-02905-3; https://dx.doi.org/10.1007/s11274-020-02905-3; https://link.springer.com/article/10.1007/s11274-020-02905-3
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know