Genetically optimized TD3 algorithm for efficient access control in the internet of vehicles
Wireless Networks, ISSN: 1572-8196, Vol: 30, Issue: 9, Page: 7581-7601
2024
- 4Captures
Metric Options: CountsSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Metrics Details
- Captures4
- Readers4
Article Description
The Internet of Vehicles (IoV) is currently experiencing significant development, which has involved the introduction of an efficient Access Control Mechanism (ACM). Reliable access control is evolving into mandatory in order to provide security and efficient transmission within the IoV environment as the volume of vehicles equipped with connectivity continues to expand and they become more incorporated into any number of applications. The primary objective of this research is to develop an ACM for the IoV system based on the use of a Genetically Optimized Twin-Delayed Delayed Deep Deterministic Policy Gradient (TD3) algorithm. The TD3 model modifies access policies to be in line with the current scenario using deep reinforcement learning (Deep RL) techniques. This allows vehicles to make access decisions that are intelligent about the environment in which they are performing. To prevent energy loss while the vehicle is in transit into the client system, the model also emphasizes access based on the vehicle's energy consumption (EC). Finally, with the support of the genetic algorithm (GA), the accuracy of the access control model can be improved by optimizing the high-level parameters in a manner in which they improves efficiency. In order to further enhance the model's environmental sustainability and reliability, the recommended model provides an approach that is both profound and efficient for access control in the constantly changing setting of the IoV.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know