Genomic breeding values’ prediction including populational selfing rate in an open-pollinated Eucalyptus globulus breeding population
Tree Genetics and Genomes, ISSN: 1614-2950, Vol: 18, Issue: 2
2022
- 7Citations
- 20Captures
Metric Options: Counts1 Year3 YearSelecting the 1-year or 3-year option will change the metrics count to percentiles, illustrating how an article or review compares to other articles or reviews within the selected time period in the same journal. Selecting the 1-year option compares the metrics against other articles/reviews that were also published in the same calendar year. Selecting the 3-year option compares the metrics against other articles/reviews that were also published in the same calendar year plus the two years prior.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Example: if you select the 1-year option for an article published in 2019 and a metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019. If you select the 3-year option for the same article published in 2019 and the metric category shows 90%, that means that the article or review is performing better than 90% of the other articles/reviews published in that journal in 2019, 2018 and 2017.
Citation Benchmarking is provided by Scopus and SciVal and is different from the metrics context provided by PlumX Metrics.
Article Description
In forest tree breeding programs, open-pollinated families are frequently used to estimate genetic parameters and evaluate genetic merit of individuals. However, the presence of selfing events not documented in the pedigree affects the estimation of these parameters. In this study, 194 open-pollinated families of Eucalyptus globulus Labill. trees were used to compare the precision of estimated genetic parameters and accuracies of predicted breeding values with the conventional pedigree-based model (ABLUP) and the pedigree-genomic single-step model (ssGBLUP). The available genetic information for pairwise parent-offspring allows us to estimate an actual populational selfing rate of 5.4%. For all the growth and disease resistance traits evaluated, the inclusion of selfing rate was effective in reducing the upward bias, between 7 and 30%, in heritability estimates. The predictive abilities for ssGBLUP models were always higher than those for ABLUP models. In both cases, a considerable reduction of predictive abilities was observed when relatedness between training and validation populations was removed. We proposed a straightforward approach for the estimation of the actual selfing rate in a breeding population. The incorporation of this parameter allows for more reliable estimation of genetic parameters. Furthermore, our results proved that ssGBLUP was effective for the accurate estimation of genetic parameters and to improve the prediction of breeding values in presence of selfing events, thus a valuable tool for genomic evaluations in Eucalyptus breeding programs.
Bibliographic Details
Springer Science and Business Media LLC
Provide Feedback
Have ideas for a new metric? Would you like to see something else here?Let us know